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Abstract

Due to complex dynamics inherent in the physical models, numerical formu-
lation of subsurface and overland flow coupling can be challenging to solve.
ParFlow is a subsurface flow code that utilizes a structured grid discretization
in order to benefit from fast and efficient structured solvers. Implicit coupling
between subsurface and overland flow modes in ParFlow is obtained by pre-
scribing an overland boundary condition at the top surface of the computational
domain. This form of implicit coupling leads to the activation and deactivation
of the overland boundary condition during simulations where ponding or drying
events occur. This results in a discontinuity in the discrete system that can be
challenging to resolve. Furthermore, the coupling relies on unstructured connec-
tivities between the subsurface and surface components of the discrete system,
which makes it challenging to use structured solvers to effectively capture the
dynamics of the coupled flow. We present a formulation of the discretized al-
gebraic system that enables the use of an analytic form of the Jacobian for
the Newton-Krylov solver, while preserving the structured properties of the dis-
cretization. An effective multigrid preconditioner is extracted from the analytic
Jacobian and used to precondition the Jacobian linear system solver. We com-
pare the performance of the new solver against one that uses a finite difference
approximation to the Jacobian within the Newton-Krylov approach, previously
used in the literature. Numerical results explores the effectiveness of using the
analytic Jacobian for the Newton-Krylov solver, and highlights the performance
of the new preconditioner and its cost. The results indicate that the new solver
is robust and generally outperforms the solver that is based on the finite differ-
ence approximation to the Jacobian, for problems where the overland boundary
condition is activated and deactivated during the simulation. A parallel weak
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scaling study highlights the efficiency of the new solver.

Keywords: overland flow, preconditioning, Newton-Krylov, implicit flow
coupling, parallel scalability

1. Introduction

The hydrologic cycle is usually simulated with discontinuous processes, each
modeled separately. These processes are, however, naturally coupled and, in
order to accurately model the complete cycle, data from one process is typically
required and used as input to another process. This situation is particularly
true for surface water and groundwater flow, where a dynamic interconnection
between overland flow (often simulated by a nonlinear wave equation) and un-
saturated subsurface flow (often simulated by a nonlinear diffusion equation) has
been demonstrated (e.g. [1, 2, 3]). Subsurface flow and overland flow models
constitute a significant contribution to the management of fresh water resources.
An efficient numerical model that adequately captures the relationship between
the two can produce results and insights that determine how renewable water
resources are to be managed. In recent years, there has been interest in com-
bining some of these processes in order to yield coupled regimes that better
capture the dynamics and intrinsic relationships between the different processes
[4, 5, 6, 1, 7, 8, 9, 10, 11, 12, 13].

The mathematical formulation of this multiphysics problem can be quite
complicated leading to a challenging numerical solution. This computational
expense is partly due to the inherent challenges of solving each individual pro-
cess numerically, including nonlinearities, high anisotropy, and heterogeneity
in the numerical coefficients of the computational models [14]. Moreover, the
multiscale nature of the coupling requires the careful development of numerical
strategies to construct a suitable computational model. While a growing body
of work presents solutions to these coupled systems, very little work has been
done to accelerate the numerical solution. A range of approaches might be em-
ployed such as temporal adaptation of the surface and subsurface systems (e.g.
[15]). Since the timescales can be similar, a fully coupled approach is often jus-
tified. However, efficient preconditioning of the linear system of equations that
arises for this multiphysics system is essential to provide substantial efficiency
gains (e.g. [14, 16]). Furthermore, in order to perform large scale simulations
or achieve a faster time to solution for the computational model, it is necessary
to take advantage of parallel computing. High performance computing (HPC)
plays an important role in climate modeling, and while it provides enhanced
capabilities for the simulation of more realistic and complex models, few pa-
pers in the literature apply HPC technology in hydrology. Earlier work in [14],
and later in [2], have demonstrated the need for efficient numerical solvers and
preconditioners for subsurface flow that exhibit good scalability.

In this paper, we present a numerical solution strategy for coupling overland
flow with subsurface flow for arbitrary geometries. Variably saturated subsur-
face flow is modeled by Richards’ equation [14]. The equation is completed by
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imposing a Dirichlet-type boundary condition on the subsurface boundary, and
a Neumann-type boundary condition on the surface boundary. Overland flow is
typically governed by an approximation to the dynamic wave equations based
on a coupling between the continuity equation, and the momentum equation
[2, 17]. Perhaps the simplest, and most widely applied, form of this approxima-
tion is the Kinematic wave approximation, where it is assumed that the local
and convective acceleration and pressure gradient of the momentum equation
do not impact the flow. In other words, the direction of flow is controlled by the
slope of the surface topography. The coupling of overland flow to subsurface flow
considered in this paper follows previous work by Kollet and Maxwell [2]. In [2],
the coupling is handled by introducing the overland flow model as a boundary
condition to the subsurface model. Overland flow is considered active when the
subsurface cells are fully saturated, otherwise the imposed boundary condition
on the surface still applies. This work presents an approach to precondition
the implicit solution of the coupled Richards’ and kinematic wave equations,
demonstrating a significant improvement in solution time. The preconditioner
uses the analytical Jacobian of the coupled system (developed for complex ter-
rain) and a matrix-vector multiplication, which is also presented. Numerical
results show that while each of these components individually does not improve
solution time greater than the increased cost of their implementation, the two
combined are needed for increased solution efficiency. The results also highlight
the effect of preconditioning on the efficiency of the numerical solution scheme,
for large-scale simulations of the coupled flow model.

This paper is organized as follows: In Section 2 we describe the mathematical
formulation for the subsurface and surface models and present a discretization
for the coupled model. In Section 3 we discuss the numerical solution strategy
used to solve the discretized problem and present a new ordering of the dis-
cretized problem that enables the use of the analytical form of the Jacobian in
the numerical solution scheme. We introduce some benchmark examples to test
our solver in Section 4 and present some numerical results in Section 5. We
summarize and conclude in Section 6.

2. Model and discretization

2.1. Mathematical model

We apply Richards’ equation as our model for subsurface flow [18],

SsSw
∂ψp

∂t
+ φ

∂Sw(ψp)

∂t
= ∇ · [k(x)kr(ψp)∇(ψp − z)] + qp, (1)

where Ss is the specific storage coefficient, Sw is water saturation, φ is the
porosity, ψp is the subsurface pressure head, k(x) is the saturated hydraulic
conductivity, kr(ψp) is the relative permeability, and qp represents any water
source or sink terms. The variable z represents the elevation or depth with
respect to some datum or reference point. Here, the convention is that z > 0 if
this elevation is below the reference point, and z < 0 if this elevation is above
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the reference point. The boundary conditions are assumed of Neumann type
and represented as:

− [k(x)kr(ψp)∇(ψp − z)] · n = qn, (2)

on the boundary Γ, and where n is the outward unit normal vector to Γ, and
qn represents some imposed flux.

Overland flow is typically modeled after a simplified form of the continu-
ity equation, by assuming that flow is triggered by ponding due to saturation
(ie. subsurface infiltration) [2]. This assumption is satisfied by the following
equation:

∂ψs

∂t
= −∇ · ~vψs + qe(x)− qr(x), (3)

where ψs is the surface ponding depth, ~v is the depth averaged velocity vector,
and qr(x) and qe(x) are the rainfall and exchange rates respectively.

The friction slope, Sf , is responsible for the kind of dynamic wave approx-
imation that defines the overland flow model. This approximation is typically
realized by coupling the continuity equation with the momentum equation [17]
to give

∂ψs

∂t
− (~v · ∇)~v − g∇ψs = g(S0 − Sf ), (4)

where g is the acceleration due to gravity and S0 is the bed slope. One simple
approximation, commonly used in the literature and which we follow in this
paper, is the kinematic wave approximation. Here, the local and convective
acceleration and the pressure gradient terms are dropped from (4). The resulting
approximation is Sf ≈ S0, and the overland flow is controlled by topographic
effects only.

Following the work in [2], coupling between the overland and subsurface flow
models is handled by prescribing the overland flow model as a boundary con-
dition to the subsurface flow model. Figure 1 shows an example of a problem
domain representing a slope geometry. The solid circles represent the com-
putational nodes at the cell centers of the subsurface domain. The grid-lined
circles represent computational nodes at the top (or land) surface. These nodes
represent where the coupling between the models takes place.

In the coupled model, the Neumann boundary condition term is replaced by
the exchange rate between the surface and subsurface, by setting qe = qn (see
[2]), and yielding

qe(x) =
∂ψs

∂t
+∇ · ~vψs + qr(x) = − [k(x)kr(ψp)∇(ψp − z)]n = qn. (5)

2.2. Subsurface Discretization

Following [14], discretization of (1) is achieved using a cell-centered finite
difference method in space and an implicit backward Euler method in time.
Harmonic averaging is applied for interface values of the hydraulic conductivity,
k(x), and upwinding for interface values of the relative permeability, kr(ψp).
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Figure 1: An example of the domain grid for the subsurface-overland flow model, showing a
slope geometry. Solid circles represent computational nodes at the cell centers of the subsurface
domain. Grid-lined circles represent computational nodes at the top surface for the overland
flow model.

The computational grid is a tensor product with Nx, Ny, and Nz cells in the
x, y, and z directions respectively. The computational nodes are defined at the
cell centers, resulting in a total of Nx ×Ny ×Nz unknowns.

Applying these discretizations results in a nonlinear system of equations
which must be solved at each time step, given by

(SsSw)i,j,k
ψn+1
pi,j,k

− ψn
pi,j,k

∆t
+ φi,j,k

Sn+1
w − Sn

w

∆t
= ∇ · Un+1 + qn+1

pi,j,k
, (6)

where Sn+1
w = Sw(ψn+1

pi,j,k
) , Un+1 = [k(x)kr(ψn+1

p )∇(ψn+1
p − z)], and the term

∇ · Un+1 is discretized as

∇·Un+1 =
Ux
i+ 1

2 ,j,k
− Ux

i− 1
2 ,j,k

∆x
+
Uy

i,j+ 1
2 ,k
− Uy

i,j− 1
2 ,k

∆y
+
Uz
i,j,k+ 1

2

− Uz
i,j,k− 1

2

∆z
. (7)

Here,

Ux
i+ 1

2 ,j,k
= (k(x)kr(ψp))i+ 1

2 ,j,k

ψn+1
pi+1,j,k

− ψn+1
pi,j,k

∆x
, (8)

Uy

i,j+ 1
2 ,k

= (k(x)kr(ψp))i,j+ 1
2 ,k

ψn+1
pi,j+1,k

− ψn+1
pi,j,k

∆y
, (9)

and

Uz
i,j,k+ 1

2
= (k(x)kr(ψp))i,j,k+ 1

2

(ψn+1
pi,j,k+1

− zk+1)− (ψn+1
pi,j,k

− zk)

∆z
. (10)
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Thus, the nonlinear function to be evaluated in each cell is given by,

FD
i,j,k(ψn+1

p ) = ∆x∆y∆z[(SsSw)i,j,k(ψn+1
pi,j,k

− ψn
pi,j,k

) + φi,j,k(Sn+1
w − Sn

w)]

−∆t∆y∆z
[
Ux
i+ 1

2 ,j,k
− Ux

i− 1
2 ,j,k

]
−∆t∆x∆z

[
Uy

i,j+ 1
2 ,k
− Uy

i,j− 1
2 ,k

]
−∆t∆x∆y

[
Uz
i,j,k+ 1

2
− Uz

i,j,k− 1
2

]
−∆t∆x∆y∆z qn+1

pi,j,k
= 0 (11)

The superscript D is used here to distinguish the nonlinear function as acting
on the subsurface nodes only.

2.3. Discretization and coupling of Overland flow terms

From the formulation in [2], overland flow should turn on when the top
boundary cell is filled. In this case, the pressure within the cell and the pressure
at the top surface (grid-lined node in Figure 1) are assumed to be equal (ψs =
ψp). Thus, there is no need to introduce any new unknowns at the top surface.
The overland flow discretization can thus be defined on the nodes at the center
of the top boundary cells.

To better understand how the coupling is handled, we rewrite (11) corre-
sponding to the top boundary (surface) cell nodes:

F D̂
i,j,k(ψn+1

p ) = ∆x∆y∆z[(SsSw)i,j,k(ψn+1
pi,j,k

− ψn
pi,j,k

) + φi,j,k(Sn+1
w − Sn

w)]

−∆t∆y∆z
[
Ux
i+ 1

2 ,j,k
− Ux

i− 1
2 ,j,k

]
−∆t∆x∆z

[
Uy

i,j+ 1
2 ,k
− Uy

i,j− 1
2 ,k

]
−∆t∆x∆y

[
qn − Uz

i,j,k− 1
2

]
−∆t∆x∆y∆z qn+1

pi,j,k
= 0 (12)

Here, the superscript D̂ is used to distinguish the nonlinear function as acting
on the top surface cell nodes only. Notice that here we have replaced the flux
across the top surface boundary, Uz

i,j,k+ 1
2

in (11), by the term qn, as prescribed

by the Neumann boundary condition in (2). In the coupled model, overland flow
is introduced by replacing qn in (12) by the exchange rate between the surface
and subsurface, which is represented by qe(x) in (3) and (5) (see [2] for details).
Below is a discretization of the overland flow contribution (from (3) and (5))
that replace qn in (12),

fi,j,k(ψn+1
p ) = ∆x∆y(ψn+1

pi,j,k
− ψn

pi,j,k
)

+∆t∆y
[
(ψn+1

p vn+1
x )i+ 1

2 ,j,k
− (ψn+1

p vn+1
x )i− 1

2 ,j,k

]
+∆t∆x

[
(ψn+1

p vn+1
y )i,j+ 1

2 ,k
− (ψn+1

p vn+1
y )i,j− 1

2 ,k

]
+∆t∆x∆y qr (13)
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where fi,j,k(ψn+1
p ) represents the contribution from the overland flow boundary

condition to the nonlinear function evaluated in each control volume of the top
boundary cell, and vx and vy are the x and y components of the velocity vector
~v respectively. These velocity components are computed by Manning’s equation
[19, 2, 17], which controls the depth-discharge relationship of the flow:

vx =
1

n
ψ2/3
p

√
Sfx, (14)

where n is the Manning’s coefficient and Sfx is the friction slope in the x-
direction.

The coefficients at the interface boundaries of (13) are computed by upwind-
ing as follows (for the east and west faces):

(ψn+1
p vn+1

x )i+ 1
2 ,j,k

= max(0, qi,j,k)−max(−qi+1,j,k, 0)

(ψn+1
p vn+1

x )i− 1
2 ,j,k

= max(0, qi−1,j,k)−max(−qi,j,k, 0) (15)

and similarly for the north and south faces, and the qi,j,k’s are computed as

qi,j,k = (vxψp)i,j,k =
1

n
ψ5/3
pi,j,k

√
Sfx × sgn(−Sfx). (16)

Here, the sgn() function simply returns the sign of the argument. Note that
since we follow the kinematic wave approximation for overland flow in this work,
the friction slope in (14) and (16) would be replaced by the bed slope.

3. Solvers

The numerical solution mechanism is based on a fully implicit parallel so-
lution scheme. To improve scalability and parallel efficiency of the numeri-
cal solution scheme, the discretized nonlinear problem is solved by an inexact
Newton-Krylov method [20, 21].

Newton’s method [22] is an iterative procedure for finding the solution to
the root-finding problem

F (ψ) = 0,

by successively correcting an initial guess to the solution. The iterative scheme
is derived from the truncated Taylor series expansion about the current iterate
ψk, and written in the form

F (ψk+1) ≈ F (ψk) + J(ψk)δk +O(‖δk‖2), (17)

where J(ψk) = F ′(ψk) is the Jacobian of the nonlinear function evaluated at the
point ψk, and δk = ψk+1−ψk is the correction or Newton update to the current
solution. From a geometric stand point, (17) represents a linear approximation
to F (ψ) about the point ψk. As a result, δk represents a step in the descent
direction toward the root of the linear function.
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Ignoring the high order terms in (17), we have following linear system at
each Newton step:

J(ψk)δk = −F (ψk), (18)

and the current solution is obtained with the update ψk+1 = ψk + δk.
Solving the linear system in (18) can be accomplished by the use of direct

or iterative linear solver techniques. However, for large problem sizes, the use
of direct methods is prohibitively expensive, in terms of both computational
and memory costs, and iterative methods are preferred. The use of an iterative
solution scheme to solve the linear system suggests that an exact solution to (18)
is not required, and an approximate solution is enough to advance the current
Newton step. The resulting scheme is known as the inexact Newton’s method.
In the most general approach, convergence of the linear system solve is assumed
when the residual of the current linear iteration, J(ψk)δk + F (ψk), satisfies

‖J(ψk)δk + F (ψk)‖2 < η‖F (ψk)‖2, (19)

where the constant, η < 1, is known as the forcing term [23]. Careful choice of
η is needed to ensure convergence of the Newton method without requiring too
much precision in the linear solve.

3.1. Newton-Krylov method

For many applications, the construction and storage of an analytic Jacobian
can be rather expensive, which can make the overall solution scheme inefficient.
Alternative approaches for dealing with this issue have led to the development of
Newton-Krylov methods [24]. The Newton-Krylov method is simply Newton’s
method with a Krylov solver for the linear system solve. Krylov methods, such
as GMRES, do not require that the linear system matrix be assembled, only that
the application of the matrix on a vector, in the form of a matrix-vector product,
be known. This can be accomplished through finite-difference approximations
of the directional derivative of F .

For the subsurface-surface flow coupling application on an arbitrary geom-
etry, the variable dependence pattern, or stencil, associated with the surface
flow regime does not generally coincide with that of the subsurface flow regime.
This mismatch makes the structural representation of the coupled problem in-
tractable with a single stencil, which can hinder numerical solution strategies
that benefit from structure. Figure 2 shows stencils associated with a node at
the top boundary of a 2D geometry example. The figure depicts a hillslope or
inclined geometry with the shaded region representing the (strictly) subsurface
cells (or the region below the top boundary cells), and the unshaded region
representing the top boundary cells where the coupling occurs. We differenti-
ate between the nodes of the stencil by using solid circles to represent strictly
subsurface nodes, and solid squares to represent the nodes at the top surface
boundary. Furthermore, we have used dashed lines to indicate stencil connec-
tions that do not exist since we are on the boundary. This is helps to provide
a more complete picture of the 5-point finite difference stencil or connectivity
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structure of the (2D) discretization. In Figure 2(a), we show the standard 5-
point finite difference stencil corresponding to the subsurface regime only. Here,
the shaded square node represents a boundary node that only interacts with its
west and south neighbors. In the coupled flow regime, this node would rep-
resent a computational node that also interacts with neighboring surface (or
top boundary) nodes. Figure 2(b) shows the stencil for the coupled regime.
Notice the additional (shaded square) nodes, and their connections, that are
introduced due to the interactions between the surface nodes. With these ad-
ditional connections, the stencil representing the coupled flow no longer has a
regular structure or pattern, particularly since the connection with leftmost top
boundary node (the curved line in Figure 2(b)) lies outside an appropriate sten-
cil location. In previous work [2], Kollet and Maxwell used the finite-difference
approach to get around this issue. However, with finite differences, oscillations
around the boundary condition activation threshold (ψ > 0) severely slowed or
prevented convergence in many cases. In this paper, we present an alternative
strategy based on reordering the Jacobian into surface and subsurface compo-
nents, to obtain an analytic representation without compromising the stencil
structure of the discretization.

(a) stencil for subsurface flow regime (b) stencil for coupled flow regime

Figure 2: Stencils associated with a node at the top boundary of a 2D hillslope geometry
example. The shaded grid cells represent the region below the top surface boundary and the
unshaded grid cells represent the top surface boundary cells. The shaded circle nodes indicate
subsurface nodes and the shaded square nodes indicate top surface boundary nodes.

The Newton-Krylov method relies on knowledge of the linear Jacobian sys-
tem in two ways. First, the matrix-vector multiply used to obtain the Krylov
vectors for the linear system solve is required. Second, a preconditioner is gen-
erally required to accelerate convergence of the Krylov solver.

3.2. Finite-Difference matrix-vector multiply

Since the linear system matrix is the Jacobian of the nonlinear function, the
action of the matrix on a vector can be approximated by taking differences of
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the nonlinear function in the direction of that vector,

J(ψk)v ≈ F (ψk + εv)− F (ψk)

ε
, (20)

where ε is a perturbation parameter that controls the quality of the approxima-
tion. Typically, ε is chosen to be small, since a large value may lead to a poor
approximation to the Jacobian. Furthermore, the Newton-Krylov scheme using
the finite difference approximation to the Jacobian can exhibit locally quadratic
convergence, typical of Newton’s method, provided ε is small enough [14, 25].
Nonetheless, care must be taken to ensure that ε is not too small, as that could
result in an approximation that is corrupted by floating point and round-off
error [21]. A good choice for ε that is commonly used in the literature comes
from [24], and is denoted

ε =
β

‖v‖2
max{|ψk · v|, ‖v‖1}sign(ψk · v), (21)

where the parameter β is related to the precision of the nonlinear function
evaluation. When the nonlinear function can be evaluated with precision εo,
then a good choice for β is β =

√
εo. In many cases, εo is chosen to be the

machine unit precision.
The conditional application of the overland boundary condition results in a

discontinuity in the (coupled) nonlinear function, F . Thus, very small values of
ε must be taken when overland flow is active. Furthermore, numerical roundoff
errors could yield spurious pressure values for the boundary nodes, which can
activate or deactivate the overland boundary condition. The result is that the
finite difference approximation to the matrix-vector product relies on inconsis-
tent behavior, and solver failures can occur due to the inability to resolve a
descent direction for Newton’s method.

3.3. Analytic matrix-vector multiply

It is possible to construct an analytic form of the Jacobian for the coupled
subsurface-surface flow model. By using an analytic form of the Jacobian-vector
product, the linear solver works with a consistent system even in the presence
of discontinuities. Hence linear solver convergence will be more stable, and
effectiveness of the Newton-Krylov solve will be improved.

Note that this does not necessarily eliminate any challenges the solver may
encounter as a result of the discontinuity in the nonlinear function at the bound-
ary. However, when these challenges are compounded by small errors in the
finite difference approximation to the Jacobian matrix-vector product, the an-
alytic form of the Jacobian can significantly improve the effectiveness and per-
formance of the Newton-Krylov method.

Consider a 3D model of the coupled problem. The overland flow boundary
condition, when active, acts only on the surface nodes. As a result, a 2D 5pt
finite difference stencil is sufficient to represent the discretized overland flow
boundary condition. However, as previously noted, the orientation of this stencil
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may be quite different from that of the stencil associated with the subsurface
regime.

5

6 7

1

8 10

9

40

3

2

Figure 3: A 2D example of the domain grid for the coupled flow model, showing the parti-
tioning of the domain into surface nodes (labeled 0 - 4) and subsurface nodes (labeled 5 -
10).

To obtain an analytic form of the global Jacobian that preserves the structure
of the discretization for each of the flow models, the global problem is decoupled
into surface and subsurface contributions (see Figure 3). This decomposition is
equivalent to a reordering of the global Jacobian matrix into the following block
form:

J =

(
C E
F B

)
(22)

where J is the analytic Jacobian, C corresponds to the surface-surface connec-
tions, B corresponds to the subsurface-subsurface interactions, E represents the
surface-subsurface connections, and F represents the subsurface-surface connec-
tions. The stencil associated with the submatrix B remains a 7pt stencil in 3D
(the original stencil associated with the subsurface problem grid). The stencils
associated with the submatrices C, E, and F are 5pt stencils each. Notice that
E and F are off-diagonal contributions only, and the orientation of their stencils
coincide with that of B. Figure 4 illustrates the connectivity pattern for the
submatrices C, E, F and B, for the 2D example in Figure 3.

The matrix-vector multiplication operation using the analytic Jacobian, for
some vector x, takes the form:(

C E
F B

)(
xC
xB

)
=

(
yC
yB

)
, (23)

which is equivalent to:
CxC + ExB = yC
FxC +BxB = yB

(24)

where xC and xB are the subvectors of x associated with the surface and sub-
surface nodes respectively, and yC and yB are the corresponding subvectors of
the result y associated with surface and subsurface nodes respectively.
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(a) submatrix C

6 7 8 95 10

0

1

2
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4
(b) submatrix E

1 2 3 40
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(c) submatrix F

6 7 8 95 10

6

7

8

9

5

10
(d) submatrix B

Figure 4: Nonzero patterns of the submatrices associated with the 2D example in Figure 3
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3.4. Preconditioning

For an efficient numerical solution by the Newton-Krylov method, a precon-
ditioner may be needed to improve the convergence of the linear system solve.
Multilevel methods are a class of preconditioners that are known to be very
robust and efficient for solving linear systems. However, many of these methods
rely on the algebraic properties of the associated coefficient matrix of the linear
system, and do not explicitly exploit the structure of the discretization. For
structured problems, it is generally more appropriate to use solvers that benefit
from the inherent structure of the problem. Multigrid methods are known to be
very scalable, particularly for structured problems, and have been successfully
used as preconditioners for both subsurface and overland flow problems [2, 14].
While the Newton-Krylov scheme does not require an explicit Jacobian matrix,
the preconditioning operation by a multigrid method requires the solution to a
linear system that adequately approximates the Jacobian system. Notice that
the analytic Jacobian, in its reordered form (22), is not amenable to solution
by structured solvers. This limitation arises because the rows of the submatrix
C will generally contain nonzero entries at unstructured column positions (see
Figure 2(b) for an example of a case where this could happen). Preconditioning
the coupled flow by a structured solver requires approximating the analytic Ja-
cobian without compromising accuracy. One possibility is to consider splitting
the analytic Jacobian matrix by block factorization as follows:

J =

(
C E
F B

)
=

(
I 0

FC−1 I

)(
C E
0 S

)
(25)

where S = B−FC−1E is the Schur complement matrix associated with C. The
submatrix S is typically expensive to form, and hence is usually approximated.
To approximate S, we note that the term FC−1E introduces surface-subsurface
coupling into S. However, some of these entries fall at positions that are outside
the nonzero pattern of B. Hence S can be approximated by constraining FC−1E
to have a sparsity pattern that agrees with that of B. The preconditioner solve
with the resulting approximation to the analytic Jacobian, can thus be done in
a series of solves with the submatrices C and S, using a structured multigrid
solver. A much less sophisticated approximation to the analytic Jacobian is to
use the Jacobian associated with the subsurface regime, as the preconditioner for
the coupled problem. While this offers a cheaper alternative, it can lead to a less
effective preconditioner when the simulation is dominated by overland flow. A
variant of this approach, which works reasonably well, is to perturb the diagonal
of the subsurface Jacobian to partially compensate for contributions from the
overland flow terms. This approach was used in [2] to precondition the coupled
problem in the absence of an analytic form of the Jacobian. However, note that
without an analytic form of the Jacobian, the only accurate contribution from
the overland flow discretization comes from the first term of (13).

In this work, we consider a preconditioner that takes into account contri-
butions from the analytic form of the Jacobian. This preconditioner takes the
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form:

M =

(
Ĉ E
F B

)
. (26)

where the matrix Ĉ has diagonal entries that match the diagonal of C. The off-
diagonal entries of Ĉ are chosen such that the entry ĉij = cij if nodes i and j are
surface nodes at the same depth of the computational domain. Approximating
C by Ĉ in this way leads to a formulation where all the components for the
preconditioner have a structured sparsity pattern, and thus, alleviates the need
to perform the above block factorization in (25). The preconditioning operation
is then accomplished by solving with M , using a multigrid solver.

From (15) it can be observed that only the upwinded terms will contribute
non-zero entries to the nonlinear function in (13). Thus, each row in C will
include contributions from the overland flow terms on the diagonal entry, and
the off-diagonal entries that correspond to the direction of flow. All other con-
tributions from overland flow will be zero. These upwinded terms typically yield
a diagonally dominant contribution to the Jacobian.

4. Test Problems

We consider three different types of problems for our numerical experiments.
These problems are all well-known and considered benchmark examples in the
literature [26].

4.1. Tilted V-Catchment example

This example simulates flow over a domain defined by two inclined planes
connected by a sloping channel [7, 2, 27], see Figure 5. In this example, we
assume that the subsurface is saturated so that the problem simulates overland
flow only. The simulation covers 100 minutes of rain, with a rainfall rate of
1.8 × 10−4m/min, followed by 200 minutes of recession and evaporation at a
rate of 1.0 × 10−6m/min. We consider two cases with different slopes for the
inclined planes and channel:

1. Slopes of 5% in the x-direction and 2% in the y-direction for the inclined
planes, and slopes of 0.0% in the x-direction and 2% in the y-direction for
the channel.

2. Slopes of 0.5% in the x-direction and 0.2% in the y-direction for the in-
clined planes, and slopes of 0.0% in the x-direction and 0.2% in the y-
direction for the channel.

4.2. Saturation Excess

In this example, the simulation models flow over a hill-slope. The compu-
tational domain covers a region 400 meters long, 320 meters wide, and 1 meter
thick, with a 5% slope in the x-direction, see Figure 6. The initial water ta-
ble is set to a depth of 1m, and the simulation covers 200 minutes of rain at
3.3× 10−4m/min, followed by 100 minutes of recession.
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Figure 5: Tilted V-catchment example. Case 1: Slopes of 5% in the x-direction and 2% in
the y-direction for the inclined planes, and slopes of 0.0% in the x-direction and 2% in the y-
direction for the channel. Case 2: Slopes of 0.5% in the x-direction and 0.2% in the y-direction
for the inclined planes, and slopes of 0.0% in the x-direction and 0.2% in the y-direction for
the channel.
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320m
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Figure 6: Hill-slope geometry. Saturation Excess example: slope in x-direction Sx = 5.0%.
Infiltration Excess example: slope in x-direction Sx = 0.5%.

4.3. Infiltration Excess

This problem uses the hill-slope geometry as in the saturation excess exam-
ple, and illustrated in Figure 6. The slope is set to 0.5% in the x-direction, and
the simulation models Hortonian runoff generated by 180 minutes of rain at a
rate of 3.3 × 10−4m/min, followed by another 120 minutes of recession. The
initial water table is set to a depth of 0.5m.

The following table details some of the parameters used for the simulation of
the different examples. Note that the initial state is assumed to be in hydrostatic
equilibrium.
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Parameter (units) V-Catchment
Saturation

Excess
Infiltration

Excess

Horizontal Mesh
∆x = ∆y (m) 10 10 5
Vertical Mesh

∆z (m) 0.05 0.05 0.05
Initial water table (m) 0.0 1.0 0.5

Porosity ( - ) 0.4 0.4 0.4
Saturated Hydraulic 6.94 × 10−4(inclined planes) 6.94 × 10−4 6.94 × 10−6

Conductivity (m min−1) 0.0 (channel)

Mannings (m−1/3 min) 2.5 × 10−4(inclined planes) 3.31 × 10−3 3.31 × 10−3

2.5 × 10−3 (channel)
Slope x (%) 0.5, 5 (inclined planes) 5 0.5

0 (channel)
Slope y (%) 0.2, 2 (inclined planes) 0 0

0.2, 2 (channel)
Rainfall rate (m min−1) 1.8 × 10−4 3.3 × 10−4 3.3 × 10−4

Evaporation rate (m min−1) 1.0 × 10−6 0.0 0.0
Van Genuchten Parameters

α (cm−1) 1.0 1.0 1.0
n ( - ) 2.0 2.0 2.0

Table 1: Parameter values for different test cases

5. Numerical Results

The numerical simulations were performed using the ParFlow code [28], orig-
inally developed at the Lawrence Livermore National Laboratory. Current de-
velopment efforts in ParFlow involves a community of collaborators working
at the Department of Geology and Geologic Engineering, Colorado School of
Mines; the Meteorological Institute, Bonn University, and the Center for Ap-
plied Scientific Computing, Lawrence Livermore National Laboratory. ParFlow
combines physics, solvers, and parallelism for the high-performance solution of
subsurface flow problems. ParFlow utilizes a globalized inexact Newton nonlin-
ear solver within KINSOL [14], and preconditioned Krylov linear solvers with
multigrid as the preconditioner. It has been modified to include overland flow
coupling using the overland flow boundary condition technique presented in [2].
In the tests that follow, we use GMRES as the Krylov solver, preconditioned
with the multigrid solver PFMG from HYPRE [29]. In all the test cases, the
parameter ε, used in the finite difference matrix-vector multiplication in (20)
is set to 1.0 × 10−8. The nonlinear solver utilizes a backtracking linesearch al-
gorithm to select the appropriate step length for each Newton iteration. The
convergence tolerance for the nonlinear solver is set to 1.0× 10−9, and we do a
maximum of 20 Newton iterations for each time step. When this maximum was
achieved, the time step was decreased by a factor of 2, and the step restarted.
We set a maximum of 10 coarse grid levels for the multigrid preconditioner used
by the Krylov solver, and for each linear iteration, the multigrid preconditioner
does 1 iteration from the finest level to coarsest level and then back to the finest
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Statistics
FD

Default PC
FD

New PC
Analytic

Default PC
Analytic
New PC

Nonlin. iters F F 115 113
Linear iters − − 3271 842
Backtracks − − 0 0
Time (s) − − 44.40 14.18

Table 2: Results for different solver combinations for the V-Catchment example with slopes
5 and 2. F indicates KINSOL convergence failure.

level (v-cycle). We set the maximum number of linear iterations to 500, which
is large enough to enable comparison of the different preconditioners.

In the numerical results that follow, we wish to highlight two main points.
First, we are interested in a comparison of the results for the different matrix-
vector products. That is, we compare simulation results using the analytic
Jacobian for the matrix-vector product for the Newton-Krylov solver, against
that of the finite difference approach. In the tables summarizing the results,
we denote the use of the analytic Jacobian by ‘analytic’, and the use of the
finite difference approximation by ‘FD’. Second, we wish to compare the per-
formance of the multigrid preconditioner using the matrix in (26) versus the
preconditioner used in [2]. As previously mentioned, the preconditioner used
for the numerical simulations in [2] is based on modifying the subsurface Jaco-
bian matrix to account for overland flow terms, in the absence of an analytic
form of the Jacobian. In ParFlow, this modification is realized by updating the
diagonal of the subsurface Jacobian to include contributions from the first and
last terms of the discretized overland flow boundary condition in (13). Notice
that this modification does not include contributions from the upwinded terms
from the overland flow boundary condition in (13). However, with the new an-
alytic representation of the Jacobian, the exact diagonal contributions from the
overland flow boundary condition can be used as the modification. In the table
of results, we distinguish between the different preconditioners by denoting the
preconditioner in [2] as ‘Default PC’, and the new preconditioner based on (26)
as ‘New PC’.

All runs to generate the following results were performed on an Intel Xeon
(E5-2670) Linux cluster with 1, 296 nodes and 16 cores per node, and with
32 gigabytes of memory per node, at the Livermore Computing Center of the
Lawrence Livermore National Laboratory. Numerical results for the sequential
runs were obtained using a single core of this machine.

5.1. V-Catchment Example

Table 2 shows the results for the V-Catchment example. Here, using the
finite difference approach for the matrix-vector multiplication for the Newton-
Krylov solver failed to converge. However, using the analytic Jacobian for the
matrix-vector multiplication successfully solved the problem. The results also
indicate some benefit in using the analytic Jacobian to define the matrix for
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Statistics
FD

Default PC
FD

New PC
Analytic

Default PC
Analytic
New PC

Nonlin. iters 187 > 126(F) 128 125
Linear iters 4297 > 22422 1233 783
Backtracks 18 > 207 0 0
Time (s) 87.85 > 842.16 20.7 15.52

Table 3: Results for different solver combinations for the saturation excess example. An (F)
indicates KINSOL convergence failure and the ‘>’ sign indicates that the solution may require
more steps or take more time to converge for this preconditioner.

the preconditioner. This benefit is characterized by fewer linear and nonlinear
iterations, and a slight improvement in the total computational time, compared
to using the default preconditioner. We also ran the easier test case with slopes
of 0.5% and 0.2% as described in the second test of Section 4.1, and the results
were very similar.

5.2. Saturation Excess Example

Table 3 presents the results for the saturation excess example. In this ex-
ample, each of the combinations for the matrix-vector multiply and the pre-
conditioner was successful in solving the problem. However, the results show
a significant improvement in terms of the total number of linear and nonlin-
ear iterations, and the total computational time, when the analytic Jacobian is
used for the matrix-vector product, compared to the finite difference approach.
Furthermore, we observe some backtracking for the nonlinear solver as a result
of its inability to find an appropriate Newton step when the finite difference
approach is used.

Note that the surface cells do not all get saturated at the same time. Thus,
when the analytic form of the Jacobian is used, it is possible to have some
of the rows of the Jacobian matrix with overland flow terms added in, and
some without any contributions from overland flow. This inclusion of non-
symmetric terms from the overland flow contribution (due to upwinding) into
the analytic Jacobian, may not have been accounted for in the finite difference
approximation to the matrix-vector product. In other words, the submatrix Ĉ
in (26) includes non-symmetric terms that may be inconsistent with the finite
difference approximation to the Jacobian matrix-vector product. The result is
that a preconditioner that is derived from the analytic Jacobian matrix is also
inconsistent with the finite difference evaluation of the Jacobian for the matrix-
vector product, which ultimately leads to solver failure. In this case, dropping
the non-symmetric overland flow contribution to the analytic Jacobian used for
the preconditioner (that is, the off-diagonal overland flow contribution to Ĉ in
(26)), can help with solver convergence. This situation explains the result in
Table 3 where the solver fails for the combination of the finite difference form
of the matrix-vector product with a preconditioner derived from the analytic
Jacobian. Here, excluding the non-symmetric terms (due to upwinding) from the
off-diagonals of the analytic Jacobian used for the preconditioner, successfully
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Statistics
FD

Default PC
FD

New PC
Analytic

Default PC
Analytic
New PC

Nonlin. iters 113 109 116 112
Linear iters 814 334 824 340
Backtracks 0 0 0 0
Time (s) 66.43 40.27 101.10 57.48

Table 4: Results for different solver combinations for the infiltration excess example. Hor-
tonian runoff generated by 180 minutes of rain at 3.3 × 10−4m/min and 120 minutes of
recession.

solves the problem in ≈ 80 seconds; using 203 nonlinear iterations with a total
of 4705 linear iterations and backtracking 11 times.

5.3. Infiltration Excess Example

Table 4 shows results for the infiltration excess problem. In this example, the
top cells are fully saturated before the entire subsurface is saturated. In other
words, overland flow is activated prior to the subsurface cells being saturated.
As a result, the simulation is dominated by overland flow of ponded water, which
leads to a situation where the finite difference matrix-vector product is consistent
with the matrix-vector product using the analytic form of the Jacobian. This
consistency is seen in the results where, for the same preconditioner, the FD
approach and the Analytic approach give similar results in terms of the number
of linear and nonlinear iterations to convergence. However, due to the more
expensive cost of computing the analytic Jacobian for the matrix-vector product,
the FD approach yields a faster time to solution compared to the Analytic
approach. Considering each of the approaches for the matrix-vector product
separately, the results also indicate significant differences in solver performance
based on the choice of the preconditioner. Clearly, including the overland flow
terms into the preconditioner helps in the convergence of the Newton iterations.
This is even more obvious when we consider the number of linear iterations
required over the entire simulation, and the overall computational time. For
each case of the matrix-vector product, we observe about a 70% improvement
in the number of linear iterations, and a roughly 60% faster in time to solution,
when the new preconditioner is used as opposed to the default preconditioner.

Table 5 shows results for a simulation of the infiltration excess problem
spanning a 5 hour time period, with 30 minutes of rainfall at a rainfall rate
of 8.3× 10−4m/min. This example studies what happens with the solver after
some initial surface ponding has occurred, leaving enough time for recession and
subsurface infiltration of the ponded water. The results highlight the difficulty
of the finite difference approach to solve the problem. This difficulty may be
attributed to the fact that the subsurface infiltration and recession leads to dry-
ing events on parts of the surface (i.e. overland boundary condition switches off
in a non-uniform way). As a result, the finite difference evaluation of the Jaco-
bian can result in an inconsistent Newton step, causing the solver to backtrack
several times. Using the analytic Jacobian avoids this inconsistency.
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Statistics
FD

Default PC
FD

New PC
Analytic

Default PC
Analytic
New PC

Nonlin. iters 168 157 116 117
Linear iters 1334 504 594 324
Backtracks 170 115 0 0
Time (s) 192.00 122.64 79.84 56.57

Table 5: Results for different solver combinations for the infiltration excess example. Horto-
nian runoff generated by 30 minutes of heavy rainfall at 8.3×10−4m/min and 270 minutes of
recession. Long recession periods lead to subsurface infiltration of ponded water and drying
events on parts of the surface.

The above results are quite interesting, and highlight the effect of the on/off
switching of the overland boundary condition on the numerical solution scheme.
When the simulation is such that boundary condition switching is minimal, as
in the first problem (Table 4), the finite difference approach does not strug-
gle much, and solves the problem quickly with the New PC option. On the
other hand, when the simulation involves sufficient and possibly non-uniform
overland boundary condition switching; as in the second problem (Table 5) and
the saturation excess and v-catchment examples; the finite difference approach
struggles, and the use of the analytic Jacobian becomes necessary.

5.4. Parallel Scaling Results

In the next example, we investigate the parallel efficiency of using the ana-
lytic Jacobian for the Newton-Krylov solver. We perform a weak scaling test of
150, 000 unknowns per problem on an example with hard rainfall-runoff down
a hill slope as in Figure 6. We consider a slope of 0.05% in the x-direction,
and the simulation covers 60 minutes of rain at a rate of 1.33 × 10−4m/min,
followed by 60 minutes of recession. The porosity of the domain is 0.05 and
the saturated hydraulic conductivity is set to 6.94× 10−6m min−1. Manning’s
roughness coefficient is set to 3.312× 10−4 and the Van Genuchten parameters
for relative permeability and saturation are α = 1.0 and n = 3.0. The problem
on each subdomain covers a region of 150m×100m×0.5m, with a mesh spacing
of 1.0, 1.0, and 0.05 in the x, y, and z-directions respectively. The water table is
set to the bottom of the domain, so that the top layer is initially dry. The choice
of the rainfall rate and the saturated hydraulic conductivity means that the top
layer is saturated and overland flow is activated before the subsurface is fully
saturated, as in the excess infiltration example. We scale the problem from 1 to
1024 processors, using even powers of 2 and measure the weak scaling and the
parallel efficiency of the Newton-Krylov solver. In addition to the total solver
performance, we are also interested in the performance of the inexact Newton
solver (KINSOL) and the associated Krylov solver preconditioned with PFMG.

Figure 7 shows the results from the weak scaling tests using both the default
preconditioning technique and the new preconditioning technique, on the same
problem. In both cases, we use the analytic Jacobian for the matrix-vector
product for the Newton-Krylov solver. The results indicate good scalability for
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Figure 7: Weak scaling study of the different preconditioner options, using the analytic Jaco-
bian for the matrix-vector products in the Newton-Krylov solver

the solver in general, and both preconditioners appear to scale well as shown in
the PFMG performance results. We do see a slight growth in the total time in
the case where the new preconditioner is used. This may be attributed to the
additional cost in computing the overland flow terms for the analytic Jacobian
that go into the preconditioner. Nonetheless, the results indicate a significant
improvement of roughly 50% in Wall clock time, when this new preconditioner
is used instead of the default preconditioner. To see the effect of the precondi-
tioners on the efficiency of the solver, we measured the scaled parallel efficiency
of the resulting solver performance. The efficiency of a parallel weak scaling
study is defined as the ratio of the time taken to solve a problem of size N
on a single processing element, to the time taken to solve the same problem of
size p ×N on p processing elements. Figure 8 shows the results. As expected,
the results show that using the new preconditioning technique leads to a more
efficient solver. Using the new preconditioner, the total number of linear iter-
ations remain the same, with no linear convergence failures, as we scaled up
the problem. As a result, the total number of nonlinear iterations and function
evaluations also remain identical, leading to an efficient solution scheme. In
contrast, when the default preconditioner is used, the total number of linear
iterations vary, as some time-steps require several iterations to converge. As a
result, there are several linear convergence failures (on average 41 per problem),
which leads to a slower convergence for the inexact Newton solver, and thus,
leads to an inefficient solver.

Notice that in both test cases, there is a sudden drop in the efficiency between
the first and second data points, particularly for the PFMG results. This is not
uncommon and may be attributed to the cost of the initial communication
being more than that of the computation involved to solve the sparse linear
system. In each case, efficiency could be improved by solving a larger (local)
problem on each processor. Alternatively, a different parallel architecture, such
as the IBM BGQ architecture, may yield a different result. Notice, however,
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that this issue is independent of the solver performance, since both scale very
well. Thus, difference in performance and solver efficiency between the different
preconditioner options, will still remain.
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Figure 8: Scaled efficiency for the weak scaling study of the different preconditioner options,
using the analytic Jacobian for the matrix-vector products in the Newton-Krylov solver

5.5. Discussion

The numerical results presented above suggest that for problems where the
nonlinear function is easy to compute and has no discontinuities (such as the
excess infiltration example in Table 4, and for problems where flow is dominated
by either subsurface or overland flow), the finite difference approximation to the
Jacobian matrix-vector product yields a faster time to solution for the Newton-
Krylov solver compared to using the analytic Jacobian to perform the matrix-
vector product. However, the results also indicate that the analytic Jacobian
yields a robust solver that can handle more challenging flow and topographic
effects. This robustness is evident during any event where the surface transi-
tions from unsaturated to saturated, such as at the onset of the V-Catchment
example, or ponding and drying events, such as the excess infiltration example.
During these events, the form of the equations change as the physics for over-
land flow contributes to the solution. These terms in (13) would not be included
in the function evaluation for the first term of the finite difference Jacobian in
(20) if the updated pressures are slightly below zero. However, the terms would
still appear in the second function evaluation of (20), creating a discontinuity
in the finite difference Jacobian. Notice that this discontinuity can occur even
for small ε (see Section 3.2), and may also be triggered by roundoff errors in
the finite difference approximation to the matrix-vector product, as discussed in
Section 3.2. The analytic Jacobian avoids this discontinuity, since its evaluation
relies only on the updated pressures. This situation leads to a consistent form
for the Jacobian, which contributes to performance improvements in the solver.
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6. Conclusion

This paper presents an effective and efficient numerical solution technique
for implicit coupling of subsurface and overland flow models. We have shown
a new approach to the solution of the coupled model that enables the use of
an analytic form of the Jacobian within a Newton-Krylov solver. The approach
relies on reordering the equations of the coupled flow problem to enable the
computation and assembly of the analytic Jacobian in a form that benefits a
numerical solution strategy using a structured solver. This approach also allows
us to construct an effective preconditioning strategy that takes advantage of
the availability of an analytic form of the Jacobian to construct a multigrid
preconditioner for the Newton-Krylov solver.

The numerical results present strong evidence to support the use of the
analytic Jacobian for the coupled flow problem. While the finite difference
approximation to the Jacobian is cheaper to compute and hence may yield a
faster time to solution for the solver; the analytic Jacobian yields a more robust
solver that can handle challenging problems where the nonlinear function has
discontinuities due to the conditional application of the overland flow boundary
condition. In such cases, the finite difference approximation to the matrix-vector
product relies on inconsistent behavior, resulting in solver failure.

Obtaining an effective preconditioner for the coupled flow problem is also
another source of difficulty for the solver. Previous strategies to construct the
preconditioner were not very effective due to the lack of adequate represen-
tation of the overland flow contributions. We have presented a new strategy
for constructing the preconditioner that takes into account the non-symmetric
contributions that come from upwinding in the overland flow model. The new
preconditioner is very effective and significantly improves solver performance.
Our results show that using the new preconditioner significantly outperforms
a preconditioning strategy previously used in the literature. Furthermore, a
parallel weak scaling study shows that the solver exhibits good parallel scaling,
and has improved parallel efficiency when the new preconditioner is used.

To summarize, the numerical results suggest that for problems where the
nonlinear function is easy to compute and has no discontinuities, it is benefi-
cial to use the finite difference approximation for the Jacobian matrix-vector
product. However, for more general cases, is it more appropriate to use the
analytic Jacobian for the matrix-vector product. The results further suggest
that a preconditioner that includes non-symmetric contributions from the over-
land flow terms improves the performance of the solver. This is especially true
when the preconditioner is used in conjunction with the analytic Jacobian for
the matrix-vector product.
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